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LETTER TO THE EDITOR 

Self-avoiding walks in a slab of finite thickness: a model of 
steric stabilisation 

A J Guttmannt§ and S G Whittington’TII 
tDepartment of Physics, University of London King’s College, Strand, WC2R 2LS, UK 
$Department of Chemistry, University of Bristol, Bristol, UK 

Received 15 March 1978 

Abstract. The technique of exact enumeration coupled with series analysis has been used 
to study the behaviour of the properties of long self-avoiding walks on a square lattice slab 
as the thickness (D) of the slab is varied. Scaling arguments due to Daoud and de Gennes 
predict the variation of mean-square end-to-end distance and of free energy with D. Our 
results are consistent with these scaling predictions for the mean-square end-to-end 
distance, but suggest that the free-energy crossover exponent is closer to unity than the 
value 6) predicted by scaling. 

The behaviour of a macromolecule confined between two planes is of interest as a 
model of the phenomenon of steric stabilisation of dispersions (Napper 1977, Gerber 
and Moore 1977). Random walk models of this situation have been studied for 
several years (e.g. Hesselink 1969, 1971, Richmond and La1 1974, Chan et a1 1976) 
and more recently the important excluded volume effect has been incorporated by a 
study of self-avoiding walks between two planes (Daoud and de Gennes 1977, 
Middlemiss et a1 1977, Wall et a1 1977a,b). 

A scaling theory has been developed by Daoud and de Gennes (1977) who 
consider a single n-step self-avoiding walk between two planes a distance D apart. 
The crossover from three-dimensional behaviour at large D to two-dimensional 
behaviour at small D is assumed to take place when the characteristic walk length 
becomes comparable to D. The characteristic walk length is given by Any, where v is 
very close to f for the three-dimensional model, is close to a for the two-dimensional 
model, and is exactly 1 for the one-dimensional model. They then proposed the 
scaling ansatz 

(R:) - Bn615(n 3 / 5 / D ) e  

when n315>D, so that by requiring (R;)-An3/’ in this case, they obtained 0 =$. A 
repetition of their argument for the two-dimensional case, that of a self-avoiding walk 
between two lines, leads to the result 

when D < n3I4, that is, 6 = 5. 
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A similar scaling argument is also given for the change in free energy, AA(D), 
which takes place on bringing up one of the planes from infinity to D. The result is 

hA(D)- hD-”” (3 1 
where the values of Y are given above. 

In this Letter we confine our attention to the two-dimensional version of this 
problem, corresponding to a self-avoiding walk between two parallel lines of the 
square lattice (whose vertices are the integer points in E‘”). The walk can therefore 
visit lattice points with any x coordinate but with y coordinate restricted to the range 
y E [0, D - 11, that is, with D available ‘lattice-lines’. Wall et a1 (1977a) have shown 
rigorously that in two dimensions 

exists for all finite D, and have explicitly evaluated f ( 2 )  and given the leading 
asymptotic term in f(3). Note that f(1) corresponds to the trivial case of a one- 
dimensional self-avoiding walk. Further, Wall et a1 (1977b) have calculated the 
number of self-avoiding walks of n steps cn(D), and hence the ‘effective coordination 
number’ p ( D )  for D = 2 and 3, where In p ( D )  = 

However, in order to test the scaling predictions, one needs to know f ( D )  and 
p(D) for a wider range of values of D. We have therefore enumerated self-avoiding 
walks on the square lattice, with origin at ( O , O ) ,  subject to the above restrictions. 
Exact values of (R i (D) )  for D -= - 6 and n d 20 and exact values of the number of 
n-step self-avoiding walks cn(D) for D = 2 (all n), D = 3 (n S 22), D = 4 (n d 22), 
D = 5 , 6  (n s 20), D = 7 (n s 18) have been obtained by enumeration. These enu- 
merations will be published subsequently. 

Using standard methods of series analysis (see e.g. Gaunt and Guttmann 1974), 
principally ratio techniques with extrapolations using Neville tables, we have obtained 
estimates of f ( D )  for D C 6 and p ( D )  for D C 7. Our estimates for D = 2 and 3 agree 
almost exactly with the results of Wall et a1 (1977b), thereby giving us considerable 
confidence in the extrapolation techniques. 

From these estimates of f ( D )  and p (D), and writing f ( D )  - gD-e, we can estimate 
8 from the sequence {eD} whose elements are given by 

In c,,(D)/n. 

Our estimates of f ( D )  and the corresponding sequence (80) are shown in table 1. 

Table 1. Estimates of the exponent 0 defined by f (D)-  go-’. For D 6 3 the results are 
exact. 

1 1.0 
2 05236 
3 0.3899 
4 0.315 
5 0.272 
6 0.24 

0.933 
0.745 
0.741 
0,659 
0.686 
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Although the sequence {e,} is rather erratic, the results are consistent with a value of 
8 between 0.6 and 0.7, and are therefore entirely consistent with the scaling predic- 
tion of t~ = 3. 

To estimate the D dependence of the free energy, we note that we can write 
(Middlemiss et a1 1977) 

where, as above, 4 can be estimated from the sequence {dD}  whose elements are 
given mutatis mutandis by ( 5 ) .  Our estimates of p ( D ) ,  and hence AA(D)/nkT and 
q5D are given in table 2. For p(m) we have used the value (Sykes et a1 1972) of 
2.6385. From these results it appears that q5 is very close to unity, and it is difficult to 
reconcile these results with the scaling prediction q5 = 1 / v  =$. Notice that the (exact) 
random walk result is 4 = 2, so that the effect of the excluded volume is to introduce a 
very strong stabilising influence. 

Table 2. Estimates of the exponent d defined by AA(D)/nkT-hD-”. For O s 3  the 
result are exact. p(00)= 2.6385. 

1 1.0000 0.97025 
2 1.61804 0.48903 
3 1.9146 0,32074 
4 2.074 0,2408 
5 2.180 0.1909 
6 2.25 0.159 
7 2.30 0.137 

0.988 
1.040 
0.997 
1.04 
0.99 
0.96 

Although the series are quite short, and the calculation involves a double 
extrapolation, it would be surprising if the results for the free energy were less reliable 
than those derived from the mean-square-length series. Indeed, the method of exact 
enumeration is likely to be more successful in estimating the radius of convergence of 
a series (that is, the free energy calculation) than the amplitude of a singularity (which 
is the parameter calculated in the mean-square-length calculation). 

The only predictions for self-avoiding walks between barriers other than the 
scaling arguments of Daoud and de Gennes are contained in Domb (1973). Although 
he distinguishes between different boundary conditions, for the ‘free-surface’ case 
(which is the one considered both here and by Daoud and de Gennes) Domb’s 
predictions agree with those of Daoud and de Gennes in three dimensions. However, 
in two dimensions Domb’s arguments for the finite size effect do not apply, and so 
these predictions cannot be considered complete for the case considered here. 
However, in finite magnetic systems the analogue of free energy scaling is the 
approach of the critical temperature to its bulk value as D increases. Again there are 
differences depending on the boundary conditions chosen, but there are dis- 
agreements even for the free-surface case. Fisher (1971) and Bray and Moore (1978, 
private communication) suggest that 

T,(OO) - T,(D) -AD+ 
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with A = l / v ,  where v is the usual bulk correlation length exponent as T approaches 
T, from above. Earlier series work on the Ising model by Allan (1970) indicated that 
A = 1 for the three-dimensional problem-though as Domb points out, the shortness 
of the series used may have been responsible for this conclusion. Possibly the most 
significant result however is the exact calculation of Fisher and Barber (1972) for the 
spherical model. For dimensionality d B 3 (since the spherical model does not have a 
phase transition for d = 2) and for ‘free-surface’ boundary conditions, they found 
A = 1, in disagreement with scaling predictions for d > 3. However, even the appli- 
cability of this result is not clear, since the spherical model in a restricted geometry 
does not in general correspond to the n = CO limit of the n-vector model (Knops 1973), 
and so the appropriateness of using the bulk exponent v in the scaling argument is 
open to doubt in this case. 

We believe that the situation is still unclear, and hope that this Letter will provoke 
further examination of these important questions. 

Both authors acknowledge financial support from the Science Research Council in the 
form of Senior Visiting Fellowships. AJG is grateful to C Domb for helpful con- 
versations and to the Theoretical Physics group at King’s College for their hospitality, 
and SGW is similarly indebted to D H Everett and the Chemistry Department at the 
University of Bristol. 
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